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Experimental heat-transfer data averaged over the tube length are examined for pulsating
air flows through the tube. It is shown that maximum changes in heat transfer occur at res-
onant frequencies. Dimensionless relations which generalize the mean heat~transfer data
are obtained.

Experimental data on local heat-transfer coefficients obtained for various pressure fluctuation fre-
quencies near the second resonance harmonic fg = 180 Hz (135 Hz = f = 225 Hz) were obtained in [1, 2].

In the present paper, which is a continuation of [1-3], we examine the influence of resonance and non-
resonance pressure fluctuations of the heat-transfer agent on the heat-transfer coefficient averaged over
the tube length.

The experimental facility employed in [1, 2] was also used in our experiments. An electrically heated
stainless steel tube with an inner diameter of 9.7 mm, a wall thickness of 0.65 mm, and a length of 1855
mm (usable length).

The air, which served as the heat-transfer agent, was supplied to the usable length by a pulser which
produced the pressure fluctuations. A rotor with radial slits served as the pulser. The amplitude of the
pressure fluctuations was measured with an ID-21 induction pressure gauge at the inlet and outlet of the
usable length.

The wall temperature was measured with 18 Chromel —Alumel thermocouples, welded to the outer
surface of the test tube, which measured 0.1 mm in diameter and whose hot junctions were spaced 100 mm
apart.

The heat flow was determined from the current strength and from the heat leakage to the thermal insu-
lation about the usable length. The time-averaged air flow rate was measured with a conventional orifice.

_ The heat-transfer coefficient averaged over the tube length was determined from the formula o= ‘Iw-
/ (TW - Tg).

The physical properties of the gas, which are contained in the dimension_less numbers (Nu, Re, Pr),
were determined from the mean transverse and longitudinal gas temperature Tf. A detailed description
of the experimental facility and procedure is to be found in [1].

The principal parameters were measured within the following ranges: Reynolds number Re = 10% to
10%, pressure P = 3 to 20 bar, the relative amplitude of the pressure fluctuations at the inlet of the test tube
(AP/P)y= 0 to 0.25, and the temperature factor Ty/T¢ = 1.2 to 1.5. The frequency of the pressure fluctua-
tions was measured within the range f = 40 to 500 Hz. The resonant frequencies fg = 90, 180, 270, 360, and
450 Hz corresponded to the first, second, third, fourth, and fifth resonance harmonics of a channel acousti-
cally sealed at both ends.
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onance harmonic (Fig. 1), five heat-transfer maxima
are distributed over the tube length. The local
heat-transfer distribution over the tube length is
qualitatively similar to that ofthe kinetic energy

of the fluctuations in the length of the standing wave

Fig. 1. Distribution of local relative heat trans-
fer Kg = Nug /Nu, over the tube length (x} for a
pressure fluctuation frequency fg = 450 Hz that
corresponds to the fifth resonance harmonic,

for various values of the relative pressure-fluc-
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is the damping factor of the fluctuation energy over the tube length.

The heat transfer damping factor averaged over the tube length
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is almost independent of the number of the resonance harmonic and of the Reynolds number, while its numer-
ical value coincides within an error of +7% with the mean damping factor of the fluctuation energy ¢ =~ @,
and is generalized by the relation

$=p=1.06 [l~exp {—10 (A—Plf)gs}]. (3)

Since, for resonance fluctuations, the distribution of the local relative heat transfer Kg = Nug /Nug is
similar to that of the kinetic energy of the fluctuations in the length of the standing wave [1], the relative
heat transfer averaged over the tube length must also. depend on the kinetic energy of the fluctuations aver-
aged over the length of the standing wave.

The mean kinetic energy of the fluctuations is determined from Eq. (2)

_ (é_ﬁf_) ;
( AEK) — Eo _ﬂaxl g' exp (—6 "']_x) sin? (nn n—x-) d (ni)= (E“—) i l—exp(—E)- 5 (4
n maxl

E, ( @ L3 U M E, 2 2
expl 2 1+ (@ _i)
P Qn) § [+<2nn)JeXp( 2n |

1149



Ks, ° 3 -1
0. Kt ’ M y o—/
14 oo (Y ° fqu ; i If \E ;\ e—2
00 O oo 7o° p II% #
o q5
onA Q ° Y q ! 1 ]
12 oo _ShPooo° | ,%i ) 4 7oA
. ° °°° ve e a o —f * M 4 w \'{\&
2S00 °° %5 075 0 a 45 97 0 gz ws 45 0 gpnl
40 %
Z’.-s Fig. 3. Variation of the mean relative heat
/2 " transfer and the relative amplitude of the
7 . .
o . pressure fluctuation as a function of a de-
/2 ' N o ° 2 :’/ =] viation of the fluctuation frequency from
? W *L —5e | the resonance frequency (45 Hz <f =< 315
.2 o_‘nf“./..‘.i ¢ b *—z Hz): 1) relative heat transfer K; 2) relative
10 %gt". ¥ amplitude of the pressure fluctuation A .
/? 4 a
S5 R a L// where
e b w (T Lo 7 (5L
12 J [y nA G Sl s 3 E, maxl k ML [ maxt
AAA 2 Mfﬁ y ¢ 1 ( 'TP
A = — ex _x
i i ' 2 \ > (- 2n)
K
Sy ¢ is the kinetic energy of the fluctuations at the i-th
/0 v v 1/";/-” v velocity antinode.
v v u
’ . :-/v’l v v —4 The relative heat transfer at the first anti-
?/ v d node of the standing wave velocity depends on the
10F% I relative amplitude of the pressure fluctuations
A (AP/P)yg, and is almost independent of the num-
o . // ber of the resonance harmonic [3]; consequently,
/2 . B it may be assumed that (AEg /E gmax; is also in-
4 'y -
/A( . s’ depgndent of the number of the resonance har
A_‘ﬂ,‘:- e monic.
VA = s L :
0 905 o1 975 g20 925 (Ap/p)o.v B_earmg in mind that the mean damping
- factor ¢ and (AEK/E (max, are independent of the
Fig. 2. Mean relative heat transfer K¢ vs the relative number of the resonance harmonic, from ex-
amplitude of the pressure fluctuations at the tube pression (4) we obtain
inlet (AP/P)yg at various resonant frequencies: a, 1) AE ) ? 2
fs = 90Hz,n = 15 b,2) f5 = 180 Hz, n = 2; ¢,3) fg ( EO“)ﬂ H“(%) g n—1’
= 270Hz,n=3;d,4) fg = 360 Hz, n = 4; e,5) fg TAE e GXP[~7T } (5)
=450 Hz,n = 5. Solid curves correspond to Eq. (9). \ —EO—“)H:I + (jﬁ)

In our test, the mean damping factor _95 varied from <1to1.06. Within this range, the quantities (¢
/2m)? and (¢/27n)? are much smaller than unity, and expression (5) can be expressed with satisfactory ac-

curacy (~2%) in the form
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By assuming that at fixed values of the Reynolds number, Prandtl number, and the temperature factor
TW/Tf, the mean relative heat transfer KS is proportional to the mean kinetic energy of the fluctuations KS
—1~ (AEK/E), we obtain a relation between the mean heat transfer and the number of the resonance har-

monic
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1150



where ES1 is the mean relative heat transfer at a frequency corresponding to the first resonance harmon-
ic.
From condition (7), it follows that for fixed Re, Pr, and Tw/ Tg, owing to the damping of the kinetic

energy of the fluctuations, the relative heat transfer decreases with increasing number of the resonance
harmonic, and at large values ofn — «, tends to the limit

Ks,n:m —l= ([_(51——1) exp [—%] . (8

Thus, at large values of n — «, the mean relative heat transfer is almost independent of the resonance har-
monic.

Equation (7) for the mean heat transfer is in satisfactory agreement with experimental data. Figure
2 shows processed mean heat transfer data for resonance fluctuations of air pressure in a tube acoustically
sealed at both ends. From Fig. 2 it can be seen that the mean relative heat transfer increases when the
relative amplitude of the pressure fluctuations at the inlet (AP/P)g increases. For large values of (AP
/P)os =~ 0.25, the mean heat transfer at n = 1 increases by 40% of its stationary value. For a constant value
of (AP/P)OS, the mean heat transfer decreases when the number of the resonance harmonic increases (for
(AP/P)ys = 0.25 at n = 4, and we have Kg = 1.28). This may probably be attributed to the dissipation of the
fluctuation energy along the tube length. In the ideal case, when the energy of the fluctuations is not damped
(¢ = 0), the mean heat transfer, according to (7), should not depend on the number of the resonance harmon-
ic.

For all five resonant frequencies fg = 90, 180, 270, 360, 450 Hz that correspond to the first, second,
third, fourth, and fifth resonance harmonics, the mean relative heat transfer can be satisfactorily (with an
error of +7%) generalized by Eq. (7), i.e.,

R, =14-1.77 (A P/P),, exp (_gi ”‘1), 9)
n

where q;depends on (AP/P)g, and is determined from Eq. 3).

When the fluctuation frequency differs from the resonant frequency, the heat transfer is smaller than
in the resonance mode.

Figure 3 experimental mean heat-transfer data can be expressed in the form:

i)

4= &% 0_(éi)m — &, (nﬂ) ’
Tl "

Af=f—f=+ 2 f= +45 .

It can be seen from Fig. 3 that at a maximum deviation of the pressure fluctuation frequency from the
resonant frequency, Af = £45 Hz, the amplitude of the pressure fluctuations (AP/P), and, consequently, the
energy of the fluctuations reach a minimum value (AP/P), = (AP/P);, while the mean relative heat trans-
fer K does not differ practically from the corresponding _stationary value K ~ 1. From this figure, it can be
further seen that a change in the relative heat transfer (K — 1)/ (Kg —1) as a function of the magnitude of the
deviation from the resonance n -Af/fg is qualitatively similar to the change in the dimensionless amplitude
of the pressure fluctuation at the tube inlet A, (Fig. 3). The experimental data on mean heat transfer for
all the nonresonant frequencies studied in this paper can be satisfactorily (with an error of +7%) generalized

by the dimensionless equation

K =1+ (K, —1) 4, (10)

*The maximum deviation of the pressure fluctuation frequency from the resonant frequency for a tube acous-
tically sealed at both ends corresponds to the resonant frequency of a tube acoustically open at one end.
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K = Nu/Nuy, Kg = Nug/Nu,

AEK = pAUY/2, By = P,

NOTATION

are the Reynolds and Prandtl numbers averaged over the tube length;

is the stationary value of the Nusselt number averaged over the tube
length;

are the wall and heat-transfer-agent temperatures averaged over the
tube length, and the heat flow, respectively;

are the pressure, and amplitude of the pressure fluctuations of the heat-
transfer agent, respectively;

are the relative amplitudes of the pressure fluctuation at the tube inlet at
resonant and nonresonant frequencies, respectively;

is the relative amplitude of the pressure fluctuation at the tube inlet at the
maximum deviation of the pressure fluctuation frequency from the reso-
nant frequency;

is the heat-transfer coefficient averaged over the tube length;

are the Nusselt numbersaveragedover the tube length at resonance and
nonresonance pressure fluctuations, respectively;

are the mean values of the relative heat-transfer coefficients at reso-
nant and nonresonant frequencies (here, the Nusselt numbers refer to
the same Re, Pr, and Ty,/Tf);

are the amplitude of the kinetic energy of the fluctuations and the po-
tential energy of the pressure in a steady flow of the heat-transfer agent,
respectively;

are the ratio of specific heats, density, speed of sound, and amplitude of
the heat-transfer-agent velocity fluctuations, respectively;

are the instantaneous coordinate and total tube length, respectively;

are the resonant and nonresonant frequency, respectively;

is the deviation of the fluctuation frequency from the resonant frequency;
are the length ofthe standing wave, number of the resonance harmonic, and
order of the velocity antinode, respectively.
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